Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Front Med (Lausanne) ; 7: 595503, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-1054985

RESUMO

Background: Elderly patients infected with COVID-19 are reported to be facing a substantially increased risk of mortality. Clinical characteristics, treatment options, and potential survival factors remain under investigation. This study aimed to fill this gap and provide clinically relevant factors associated with survival of elderly patients with COVID-19. Methods: In this multi-center study, elderly patients (age ≥65 years old) with laboratory-confirmed COVID-19 from 4 Wuhan hospitals were included. The clinical end point was hospital discharge or deceased with last date of follow-up on Jul. 08, 2020. Clinical, demographic, and laboratory data were collected. Univariate and multivariate analysis were performed to analyze survival and risk factors. A metabolic flux analysis using a large-scale molecular model was applied to investigate the pathogenesis of SARS-CoV-2 with regard to metabolism pathways. Results: A total of 223 elderly patients infected with COVID-19 were included, 91 (40.8%) were discharged and 132 (59.2%) deceased. Acute respiratory distress syndrome (ARDS) developed in 140 (62.8%) patients, 23 (25.3%) of these patients survived. Multivariate analysis showed that potential risk factors for mortality were elevated D-Dimer (odds ratio: 1.13 [95% CI 1.04 - 1.22], p = 0.005), high immune-related metabolic index (6.42 [95% CI 2.66-15.48], p < 0.001), and increased neutrophil-to-lymphocyte ratio (1.08 [95% 1.03-1.13], p < 0.001). Elderly patients receiving interferon atmotherapy showed an increased probability of survival (0.29 [95% CI 0.17-0.51], p < 0.001). Based on these factors, an algorithm (AlgSurv) was developed to predict survival for elderly patients. The metabolic flux analysis showed that 12 metabolic pathways including phenylalanine (odds ratio: 28.27 [95% CI 10.56-75.72], p < 0.001), fatty acid (15.61 [95% CI 6.66-36.6], p < 0.001), and pyruvate (12.86 [95% CI 5.85-28.28], p < 0.001) showed a consistently lower flux in the survivors vs. the deceased subgroup. This may reflect a key pathogenic mechanism of COVID-19 infection. Conclusion: Several factors such as interferon atmotherapy and recreased activity of specific metabolic pathways were found to be associated with survival of elderly patients. Based on these findings, a survival algorithm (AlgSurv) was developed to assist the clinical stratification for elderly patients. Dysregulation of the metabolic pathways revealed in this study may aid in the drug and vaccine development against COVID-19.

2.
Sci Rep ; 10(1): 22451, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1003312

RESUMO

Novel coronavirus 2019 (COVID-19) infection is a global public health issue, that has now affected more than 200 countries worldwide and caused a second wave of pandemic. Severe adult respiratory syndrome-CoV-2 (SARS-CoV-2) pneumonia is associated with a high risk of mortality. However, prognostic factors predicting poor clinical outcomes of individual patients with SARS-CoV-2 pneumonia remain under intensive investigation. We conducted a retrospective, multicenter study of patients with SARS-CoV-2 who were admitted to four hospitals in Wuhan, China from December 2019 to February 2020. Mortality at the end of the follow up period was the primary outcome. Factors predicting mortality were also assessed and a prognostic model was developed, calibrated and validated. The study included 492 patients with SARS-CoV-2 who were divided into three cohorts: the training cohort (n = 237), the validation cohort 1 (n = 120), and the validation cohort 2 (n = 135). Multivariate analysis showed that five clinical parameters were predictive of mortality at the end of follow up period, including advanced age [odds ratio (OR), 1.1/years increase (p < 0.001)], increased neutrophil-to-lymphocyte ratio [(NLR) OR, 1.14/increase (p < 0.001)], elevated body temperature on admission [OR, 1.53/°C increase (p = 0.005)], increased aspartate transaminase [OR, 2.47 (p = 0.019)], and decreased total protein [OR, 1.69 (p = 0.018)]. Furthermore, the prognostic model drawn from the training cohort was validated with validation cohorts 1 and 2 with comparable area under curves (AUC) at 0.912, 0.928, and 0.883, respectively. While individual survival probabilities were assessed, the model yielded a Harrell's C index of 0.758 for the training cohort, 0.762 for the validation cohort 1, and 0.711 for the validation cohort 2, which were comparable among each other. A validated prognostic model was developed to assist in determining the clinical prognosis for SARS-CoV-2 pneumonia. Using this established model, individual patients categorized in the high risk group were associated with an increased risk of mortality, whereas patients predicted to be in the low risk group had a higher probability of survival.


Assuntos
COVID-19/mortalidade , Modelos Estatísticos , Mortalidade , Idoso , China , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Linfopenia/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA